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Challenges In Gyrokinetic
Numerical Algorithms

Motivation: progress being made in fusion,
better understanding could help too

Paradigm gyrokinetic problem: Alfven waves
A stability limit on a gyrokinetic ADI algorithm

Kotschenreuther’s trick for fast implicit solves

Are there faster iterative methods? (particularly
useful for extending to higher collisionality edge
plasmas or including large scale ExB shear?)



The Estimated Development Cost for Fusion
Energy is Essentially Unchanged since 1980
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On budget, $30B development cost tiny compared to >$100 Trillion
. . energy needs of 21st century and potential costs of global
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warming. Still 40:1 payoff after discounting 50+ years.

R. Goldston, PPPL



New Reactor Designs Much Better than 1996 ITER
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Compared to original 1996 ITER design, new ITER-FEAT 2001 and FIRE designs can
operate at significantly lower density relative to Greenwald limit, in part because of
stronger plasma shaping (higher triangularity and elongation).

JET data from G. Saibene, EPS 2001, J. Ongena, PPCF 2001. Seen in other tokamaks also.



Fascinating Diversity of Regimes in Fusion Plasmas.
What Triggers Change? What Regulates Confinement?

TFTR

* Two regimes with very different confinement
for similar initial conditions and neutral beam heating

* Access depends on plasma heating and reducing
current density on axis

* Can we atinbute a difference in turbulence to these
two different confinement regimes?
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The 5D Nonlinear Integro-Differential
Gyrokinetic Equation
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Thetotal time derivative contains the nonlinear term, i.e. % = —{X h}

The self-consistent electromagnetic field fluctuatlons are
computed from the gyrokinetic Poisson-Amper e Equations:
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Alfven wavesin a Simple Limit of Gyrokinetic Eq.

For high frequency waves, ignore parallel ion motion.
For Kk p, <<1, gyrokinetic eg. for electrons reduces to drift-kinetic eq.:
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Linearize F=F+f, use Ampere'sLaw & Quasineutrality (w/ polarization):
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Alfven wavesin a Simple Gyrokinetic Limit (cont.)

Density moment of drift kinetic eq.:

on, 0
o :_a_(neoun)
kDps €0 A, a ecD k2 : a

ot T, 4moz

ko cancel. Combinewith E=0 to get wr=k v,2 Or combine with parallel
momentum moment of drift kinetic equation

ou ap
le — e

with eg. of statep,, =I' n,; T, and Pade approx. I' ;= Y/(1+k? p;?)
to get kinetic Alfven wave:
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Simple Limit of Gyrokinetic Equation
(dimensionless, electr ostatic)

of (z,v,1) :—vi+va£ F
ot 0z 0z

ko =~[dvf

Requires implicit treatment for high frequency, irrelevant waves W = k22 / ké



Simple ADI algorithm for gyrokinetics

ofzv.h) _ 9,9 ke =~[dvf
ot 0z 0z

.I: n+l/2 _ .I: n af n+l/2 acbn
==V +VH,

At/ 2 0z 0z

f n+l _ f n+1/2 of n+1/2 ach+1

==V +VF,

At/ 2 0z 0z

kécbnﬂ — _J'dvf n+1l

Easy to invert operators, but found stability limit At k/kp=At w<2



Numerical Instabilitiesin Gyrokinetic ADI algorithm

Even when extended to the electromagnetic case with A # 0, which slows down
the waves to have w = k, << kj/k, still find numerical instability if
Atk/k;>2. (EA.Beli & G.W. Hammett, sub. to Comp. Phys. Comm.)

Usually think of ADI algorithms as being at |east robust and absolutely stable,
even if splitting errors cause accuracy problems. But here we found an instability.



Wefind that the ADI algorithm isnumerically unstable
for At/2 > [kps/ Ky In both the low and high

(BJ/2)(m;/m,) regimes.

Mode frequency & amplitudevs. time step

(B/2)(m/m,) =0.1 for the kinetic Alfven wave at kp.=0.03. (B/2)(m/m,) = 10
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A Simple lllustration of the Numerical Difficulties of the

ADI algorithm
The Landau-fluid approx to the kinetic egn:

9p _ _0u _9A

ot 02z 02z ki® = -p
du _ _9oP 939 ) .
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Fourier transform in space;
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Apply the ADI algorithm:
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ES. E isnot diagonalizable & E"=0, n>1
EM: eigenvaluesof E are purely real (£ [k /ky|[B/ (kg™ B)]¥?)



Direct Implicit Solve Expensive

2 —_——
of (zv.t) __ of 0P F k2 = J'dvf
ot 0z 0z
Combine into standard ODE form:
Tont =2 ovF, 2jdvf
at 0z az K*

Integro-differential equation. A not very sparse. Very inefficient to use directly.

F =N, N, vector ~ 500 x 200 ~ 10”5
A =(N,N,)x(N,N,) matrix
Direct implicit solve: (N, N, ) x (N, N, ) matrix problem

Kotschenreuther trick: 2 N, callsto N, x N, tridiagonal solver
1 dense N, x N, matrix solve

Kotschenreuther et a.., Comp. Phys. Comm. 1995



Kotschenreuther Trick For Fast, Exact Implicit Solve

Illustrate with ssimple uncentered, implicit time, upwind space, explicit source S
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Response matrix M; ,, measures charge induced at position j in response to potential
perturbation at position m. Requires N, solves of kinetic equation, but only has

to be computed once (unless At changes).
Kotschenreuther et al.., Comp. Phys. Comm. 1995



Alternative lterative Implicit Solve

Kotschenreuther’ s agorithm works fairly well, factoring a hard problem exactly
Into two simpler problems. But thereisovernead. Arethere ways to do better?
Response matrix M; ., requires N, solves of kinetic equation, but only has

to be computed once (unless At changes).

If we have a good approximation M , can use asimple iterative method, or use
It as a preconditioner for an iterative Krylov solver.

ko)™ =~[avf™[0]-M P}

jimm

(KL1+M PRt == v [0] =M, =M | )P

jmTm

(Ki1+M | PN = =[dvf O]+ M | Drt?

Kotschenreuther et a.., Comp. Phys. Comm. 1995



A numerical preconditioner was devel oped based on insight
from the Pade approximations.

Our first ssimple numerical approx:
-- compute the exact M;; vs. i for a singlevalueof j=j,
-- assume other values can be calculated by trandlation

Mij = Mijsjojo

- only nk,*nk *nfields GK-Poisson-Ampere solves are required.
However, in areal tokamak there are some spatial variations.

A new preconditioner was developed based on computing approx values for
M, vs.I at various] smultaneously:

Example lllustration for ng,, =1 and ny;,, = 4, nipts = 1:

Set @ values set for spatial grid ptsj =1,5,9, ...

+1 0 0 0 -1 0 0 0 +1 0 0
Solvefor theresponserow R,

T

M=R, Mys=-R, Mgy =Rg
My =R, Mss=-Rs Mgy =Rg
Mgs= -Re Moo = Ryo
Extrapolate to get Extrapolate to get Extrapolate to get
M;q, 1=3,... Mis, 1=1,.3& Miq, 1=1,..7 &

I =7,... i=11,...




The approximate response matrices agree well with the exact
matrices, even at the boundaries.

Test case
parameters:
lion species &
GK €éectrons
Concentric
circular geo.
rla = 0.80
R/a = 342
q = 2.03
S = 1.62
0R, =-0.14
0,8 =-0.0084
B =0
(es)
= le3
(em)
alLT = 315
alLn =102
Ti/Te =1.0
collisionless

Figures are for
k,p=0.1, At=0.05
Exact (red)
Approx (blue)
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Various initializers & iterative schemes were implemented in GS2.

iteration tol = 2 wtol = 2.5e-6 At=0.01 At=0.05 At=0.1
Avg. Num Avg. Num GK Avg. Num Avg. Num GK Avg. Num Avg. Num GK
iterations/tstep solves/tstep iterationg/tstep solves/tstep iterationg/tstep solves/tstep
Exact | mplicit 1 2 1 2 1 2
Iterativeimplicit at k, p,=0.5:
Simpleiteration 2.05 2.05 3.06 3.06 511 511
2.11 (em) 2.11 (em) 3.10 (em) 3.10 (em) 5.37 (em) 5.37 (em)
Steepest Descent 2.14 414 3.09 5.09 4.15 6.15
BiConjugate Gradient Stabilized 1.01 5.02 1.05 5.11 2.02 7.05
(Bi-CGSTAB)
Generalized Minimal Residual n, . =1- 2.00 5.00 2.94 5.94 3.87 6.87
(GMRES)’ Nrestart™2 = 2.00 5.00 2.09 5.09 3.00 6.00
Iterativeimplicit at k,p;=0.1:
Simpleiteration 2.18 2.18 4.40 4.40 8.66 8.66
2.77 (em) 2.77 (em) 20.47 (em) 20.47 (em) not convg (em) | not convg (em)
Steepest Descent 2.25 4.25 3.75 575 5.93 7.93
BiConjugate Gradient Stabilized 1.01 5.02 1.60 6.21 2.63 7.73
(Bi-CGSTAB)
Generalized Minimal Residual n, . =1- 2.98 5.98 4.81 7.81 8.70 11.70
(GMRES)' Nrestart™2 = 2.92 5.92 3.99 6.99 6.21 9.21

Initializers:

linear extrapolation initializer: ®"10= @n+(pn-Ppn-1)

* Routines adapted from V. Fraysse, et al, CERFACS Technical Report TR/PA/03/3.




Conclusions: Gyrokinetic Algorithms

Paradigm gyrokinetic problem: Alfven waves
« Numerical instability in agyrokinetic ADI algorithm

Kotschenreuther’ s trick for fast implicit solves

Arethere faster iterative methods? (particularly
useful for extending to higher collisionality edge
plasmas or including large scale ExB shear?)



Conclusions
|. Studies of Improved Algorithmsfor Gyrokinetics

An iterative implicit scheme based on numerical or analytic approxs of the plasma
response has been developed. A numerical preconditioner with a ssmpleiterative scheme
was found to work well in the eslimit, but a more robust Newton-Krylov solver might be
necessary with em dynamics.

| mplementation of an ADI algorithm in a gyrokinetic problem was surprisingly found to
yield a severetime step restriction for atest problem of a shear kinetic Alfven wave at
low kgp; in both thelow and high (B/2)(m;/m,) regimes.

|I. Studies of the Effects of Shaping on Plasma Turbulence

FutureWork:

I nvestigate the numerical stability of other possible partially implicit algorithms.

Continueto explore other numerical improvements, such as higher-order / variable time-
stepping explicit treatment of the nonlinear term in GS2.



